
SmashClean: A Hardware level mitigation to stack smashing attacks in OpenRISC
Manaar Alam, Debapriya Basu Roy, Sarani Bhattacharya, Vidya Govindan

Rajat Subhra Chakraborty and Debdeep Mukhopadhyay

alam.manaar@gmail.com, vidya.mazhur@gmail.com, sarani.bhattacharya@cse.iitkgp.ernet.in, deb.basu.roy@cse.iitkgp.ernet.in,
rschakraborty@cse.iitkgp.ernet.in, debdeep@cse.iitkgp.ernet.in

Secured Embedded Architecture Lab, Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, India

INTRODUCTION

• Security threats to embedded systems

– Hardware and Software vulnerabilities

– Performance-efficient languages such as C and
C++ widely used for embedded applications

– Vulnerable to memory corruption due to lack of
secure management

• Buffer Overflow: Trigger malicious code execution by
overwriting correct memory content

– Software level countermeasures may be easily
bypassed

– Need hardware level countermeasures, e.g.
hardware-based protection of the function return
address

– target platform for existing architectures differ-
ent from the OpenRISC ISA processor

OUR OBJECTIVE

Hardware-Based Mitigation of Memory Corruption and

Ensuring Control Flow Integrity for the OpenRISC ISA

Processor

OUR CONTRIBUTIONS

• Prevention of all forms of memory corruption and
buffer overflow attacks on OpenRISC architecture

• Combination of compiler and hardware modification

• Introduction of new instructions via hardware modifi-
cation for compiler to detect and prevent memory cor-
ruption via buffer overflow

OVERVIEW

• The root cause of buffer overflow threat:

– memcpy does not impose any bound-checking
during memory update

• Our countermeasure approach:

– Introduction of new instructions that keep
track of the buffer size

∗ Ensures number of memory locations up-
graded by memcpy is less than or equal to
buffer size

– Storing the return addresses in the hardware
stack

∗ Prevention of return address modification

• Our results:

– Prevented stack.c, ptr.c and priv.c on
Linux platform using our new instruction

– Protection against return address modification
by format.c using stack-based tracking of re-
turn addresses

ATTACKING CONTROL FLOW

Return Address Modification

int func(char* user, int len) {

char buff[100];

memcpy(buff, user, len); //Vulnerability

}

Format String Vulnerability

int n;

printf("%12c%n", ’A’, &n);

int func(char* user) {

printf(user); //Vulnerability

}

Example: Assembly Code for Stack.c

vuln:

.LFB1:

.cfi_startproc

.

.

.

l.ori r1,r2,0 # deallocate frame

l.lwz r2,-8(r1) # SI load

l.lwz r9,-4(r1) # SI load

l.jr r9 # return_internal

l.nop # nop delay slot

.cfi_endproc

• If the address provided by a malicious user causes
buffer overflow to modify r9 then the control flow gets
transferred to the malicious code

MEMORY CORRUPTION

Data Pointer Modification

int func(char* user, int len) {

int *ptr;

int newdata = 0xaaaa;

char buff[16];

int olddata = 0xffff;

ptr = &olddata;

memcpy(buff, user, len); //Vulnerability

*ptr = newdata;

}

Function Pointer Modification

int func(char* user, int len) {

void (*fptr)(char *);

char buff[100];

fptr = &foo; //Address of intended function

memcpy(buff, user, len); //Vulnerability

fptr(user);

}

PROTECT CONTROL FLOW

• Implementation of a hardware stack which stores the
function return address for each of the function

• Prevention using hardware stack:

– Whenever it encounters a l.jal or l.jalr in-
struction, it pushes the next program counter
value to the stack

– Alternatively if it encounters l.jr instruction
with register r9 as parameter, it pops its top
value and passes that as the return address

– Custom instruction l.cust1, when enabled, en-
sures that the return address of the functions are
read from the hardware stack.

– Custom instruction l.cust2 disables the hard-
ware stack.

PREVENT MEM. CORRUPTION

• We introduced hardware enforced secure memcpy

• This protection prevents buffer overflow by hardware
induced bound check and prevents any memory corrup-
tion due to buffer overflow.

Example: Assembly Code for Priv.c

vuln:

l.sw -40(r2),r3 # SI store

.

.

.

l.sw -36(r2),r3 # SI store

.

.

.

l.nop # nop delay slot

l.lwz r4,-44(r2) # SI load

l.addi r3,r2,-32 # addsi3

l.ori r5,r4,0 # move reg to reg

l.lwz r4,-40(r2) # SI load

l.jal memcpy # call_value_internal

l.nop # nop delay slot

• The first instruction (l.addi r3, r2,−32) transfers the
starting address of the buffer (r2 − 32) to r3. The ad-
dress of the latest new variable in this case is r2 − 16.
Subtracting this two will give us buffer size which in this
case is 16.

• The next instruction l.ori transfers the function argu-
ment count to r5 which denotes the number of memory
locations to be updated by memcpy.

• Now, we will check whether the instruction
l.ori r5, r4, 0 returns the count value greater
than the buffer size or not.

Secure memcpy

OUR HARDWARE STACK NEW INSTRUCTIONS

• l.cust3 This instruction will be inserted by the compiler
just before memcpy function is declared in C code to
protect buffer overflow. This instruction sets a specific
flag inside the processor and observes the occurrence of
l.addi and l.ori which are required for computation
of buffer size. If the buffer size is less than the argument
count a smash_detect flag is set and the value of the
count argument is updated with the buffer size. Thus
this instruction ensures both detection and prevention
of buffer overflow.

• l.cust4 This instruction resets the smash_detect flag.

• l.cust5 This instruction induces a lock on latest variable
address location to preserve it from intermediate func-
tion calls. This can be alternatively achieved by main-
taining a hardware stack for latest variable locations for
each function call.

• l.cust6 This instruction removes the aforementioned
lock.

