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1. Introduction
• Deep Neural Networks (DNN) is recently being used for many privacy-preserving applications where privacy of user data requires utmost attention.

• Recent attempts try to reverse engineer a DNN model to retrieve the model parameters [1, 2] or determine user inputs [3] by exploiting side-channel
information leakages to compromise privacy.

• We provide an evaluation strategy to measure private information leakages during the prediction operation of a DNN using Hardware Performance
Counters (HPCs), present in most of the modern processors, and basic hypothesis testing methodology.

2. Motivation
• Execution of DNN classifier consists of a

series of multiplication and addition oper-
ations on the computing environment.

• Execution of any process on CPU leaks
valuable side-channel information through
processor cache, branch predictor unit and
other low-level hardware activities [4].

• The motivation is to explore the possibility
of private information leakages in terms of
these hardware events during classification
operation of a DNN.

3. Information Leakage from CNN Operations
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Figure 1: Information Leakages for MNIST and
CIFAR-10 dataset considering different categories

• Images belonging to a particular class acti-
vates a specific set of neuron in the CNN,
which might not get activated for other im-
ages belonging to a different class.

• The activation and inactivation of these neu-
rons influence CNN operation affecting CPU
cache, branch predictor and other units dif-
ferently for different categories.

4. Methodology for Evaluation
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Figure 2: Evaluation Scenario

1. A group of User can access a CNN, trained
on private information, to get predictions on
their respective inputs.

2. The Evaluator is not provided with any de-
tails of the CNN but it can dynamically mon-
itor HPCs during its execution using its pro-
cess id and perf tool.

3. Various HPC events can be monitored in paral-
lel during the classification operation of differ-
ent category of input images, considering each
category individually.

• Generates distributions of different events
for each class of inputs.
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Figure 3: Values of different HPC events during
classification of a sample MNIST image

Figure 4: Distributions of differenct HPC events during the classification operation for different categories
of images in MNIST and CIFAR-10

4. The Evaluator employs hypothesis testing methodology by computing t-statistics on the dis-
tributions of same HPC events for different categories.

• Distinguishable distributions signify there are side-channel information leakage, which an
adversary will be able to exploit to uncover private input images.
– Indicates an inefficient implementation of the CNN model.

5. Results
• Experimental Setup:

– Two CNNs are designed for
MNIST and CIFAR-10 dataset
using tensorflow library.

– The CNNs are executed in Intel Xeon
E5-2690 CPU having Ubuntu 18.04
with a 4.15.0-36-generic kernel.

• Case Study on MNIST
cache-misses branches

t-values p-values t-values p-values
t1,2 -21.8166 ≈0 0.4303 0.6669
t1,3 -25.7566 ≈0 1.6565 0.0977
t1,4 2.5334 0.0113 0.9537 0.3403
t2,3 40.5268 ≈0 -2.0064 0.0449
t2,4 22.6505 ≈0 0.4941 0.6212
t3,4 -20.9758 ≈0 2.5435 0.0110

• Case Study on CIFAR-10
cache-misses branches

t-values p-values t-values p-values
t1,2 4.4643 0.0001 -0.8796 0.3801
t1,3 11.0415 ≈0 2.0810 0.0392
t1,4 -16.3093 ≈0 -1.7474 0.0823
t2,3 -16.9589 ≈0 -1.0332 0.3032
t2,4 -21.2428 ≈0 -0.7535 0.4521
t3,4 -8.4637 ≈0 0.2997 0.7647

* ti,j : The t-test on distributions for cate-
gory i and j.

* The bold faced results indicate that the
two categories are distinguishable.

6. Conclusions
• We presented a strategy to evaluate the

data privacy of DNN architectures with
readily available Hardware Performance
Counters using t-test.

• Our evaluation tool highlights the need for
designing DNN architectures with indis-
tinguishable CPU footprints while classi-
fying different input categories in order to
implement a privacy preserving classifier.
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