
HowSecureareDeepLearningAlgorithms from
Side-ChannelbasedReverseEngineering?

Manaar Alam and Debdeep Mukhopadhyay
Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur

alam.manaar@iitkgp.ac.in, debdeep@cse.iitkgp.ac.in

1. Introduction
• Deep Neural Networks (DNN) is recently being used for many privacy-preserving applications where privacy of user data requires utmost attention.

• Recent attempts try to reverse engineer a DNN model to retrieve the model parameters [1, 2] or determine user inputs [3] by exploiting side-channel
information leakages to compromise privacy.

• We provide an evaluation strategy to measure private information leakages during the prediction operation of a DNN using Hardware Performance
Counters (HPCs), present in most of the modern processors, and basic hypothesis testing methodology.

2. Motivation
• Execution of DNN classifier consists of a

series of multiplication and addition oper-
ations on the computing environment.

• Execution of any process on CPU leaks
valuable side-channel information through
processor cache, branch predictor unit and
other low-level hardware activities [4].

• The motivation is to explore the possibility
of private information leakages in terms of
these hardware events during classification
operation of a DNN.

3. Information Leakage from CNN Operations

Image of 1 Image of 2 Image of 3 Image of 4

8.35

8.4

8.45

8.5

8.55

·106

#
ca
ch
e-
m
is
se
s

MNIST

Airplane Automobile Bird Cat

1.23

1.24

1.25

1.26

·107

#
ca
ch
e-
m
is
se
s

CIFAR-10

Figure 1: Information Leakages for MNIST and
CIFAR-10 dataset considering different categories

• Images belonging to a particular class acti-
vates a specific set of neuron in the CNN,
which might not get activated for other im-
ages belonging to a different class.

• The activation and inactivation of these neu-
rons influence CNN operation affecting CPU
cache, branch predictor and other units dif-
ferently for different categories.

4. Methodology for Evaluation
Classifier Running in a

Computing Environment

Users

Provide
Inputs

Output
Class

Evaluator

Observes HPC
Event during
Classification

Operation

Figure 2: Evaluation Scenario

1. A group of User can access a CNN, trained
on private information, to get predictions on
their respective inputs.

2. The Evaluator is not provided with any de-
tails of the CNN but it can dynamically mon-
itor HPCs during its execution using its pro-
cess id and perf tool.

3. Various HPC events can be monitored in paral-
lel during the classification operation of differ-
ent category of input images, considering each
category individually.

• Generates distributions of different events
for each class of inputs.

 2,26,77,01,129 branches
 6,24,60,873 branch-misses
 61,95,45,765 bus-cycles
 83,64,694 cache-misses
 6,34,15,934 cache-references
16,22,12,80,350 cycles
12,09,42,22,814 instructions
15,99,20,10,924 ref-cycles

Figure 3: Values of different HPC events during
classification of a sample MNIST image

Figure 4: Distributions of differenct HPC events during the classification operation for different categories
of images in MNIST and CIFAR-10

4. The Evaluator employs hypothesis testing methodology by computing t-statistics on the dis-
tributions of same HPC events for different categories.

• Distinguishable distributions signify there are side-channel information leakage, which an
adversary will be able to exploit to uncover private input images.
– Indicates an inefficient implementation of the CNN model.

5. Results
• Experimental Setup:

– Two CNNs are designed for
MNIST and CIFAR-10 dataset
using tensorflow library.

– The CNNs are executed in Intel Xeon
E5-2690 CPU having Ubuntu 18.04
with a 4.15.0-36-generic kernel.

• Case Study on MNIST
cache-misses branches

t-values p-values t-values p-values
t1,2 -21.8166 ≈0 0.4303 0.6669
t1,3 -25.7566 ≈0 1.6565 0.0977
t1,4 2.5334 0.0113 0.9537 0.3403
t2,3 40.5268 ≈0 -2.0064 0.0449
t2,4 22.6505 ≈0 0.4941 0.6212
t3,4 -20.9758 ≈0 2.5435 0.0110

• Case Study on CIFAR-10
cache-misses branches

t-values p-values t-values p-values
t1,2 4.4643 0.0001 -0.8796 0.3801
t1,3 11.0415 ≈0 2.0810 0.0392
t1,4 -16.3093 ≈0 -1.7474 0.0823
t2,3 -16.9589 ≈0 -1.0332 0.3032
t2,4 -21.2428 ≈0 -0.7535 0.4521
t3,4 -8.4637 ≈0 0.2997 0.7647

* ti,j : The t-test on distributions for cate-
gory i and j.

* The bold faced results indicate that the
two categories are distinguishable.

6. Conclusions
• We presented a strategy to evaluate the

data privacy of DNN architectures with
readily available Hardware Performance
Counters using t-test.

• Our evaluation tool highlights the need for
designing DNN architectures with indis-
tinguishable CPU footprints while classi-
fying different input categories in order to
implement a privacy preserving classifier.

7. References
[1] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse engineering convolutional neural networks through side-channel

information leaks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018.

[2] Mengjia Yan, Christopher Fletcher, and Josep Torrellas. Cache telepathy: Leveraging shared resource attacks to learn
dnn architectures. arXiv preprint arXiv:1808.04761, 2018.

[3] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what you see: Power side-channel attack on convolutional
neural network accelerators. In Proceedings of the 34th Annual Computer Security Applications Conference. ACM, 2018.

[4] Qian Ge, Yuval Yarom, Frank Li, and Gernot Heiser. Your processor leaks information-and there’s nothing you can do
about it. arXiv preprint arXiv:1612.04474, 2016.

