How Secure are Deep Learning Algorithms from Side-Channel based Reverse Engineering?

Manaar Alam and Debdeep Mukhopadhyay Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur alam.manaar@iitkgp.ac.in, debdeep@cse.iitkgp.ac.in

1. Introduction

- Deep Neural Networks (DNN) is recently being used for many privacy-preserving applications where privacy of user data requires utmost attention.
- Recent attempts try to reverse engineer a DNN model to retrieve the model parameters [1, 2] or determine user inputs [3] by exploiting side-channel information leakages to compromise privacy.
- We provide an evaluation strategy to measure private information leakages during the prediction operation of a DNN using Hardware Performance Counters (HPCs), present in most of the modern processors, and basic hypothesis testing methodology.

2. Motivation

3. Information Leakage from CNN Operations

- Execution of DNN classifier consists of a series of multiplication and addition operations on the computing environment.
- Execution of any process on CPU leaks valuable side-channel information through processor cache, branch predictor unit and other low-level hardware activities [4].
- The motivation is to explore the possibility of private information leakages in terms of these hardware events during classification operation of a DNN.

5. Results

- Experimental Setup:
 - Two CNNs are designed for
 MNIST and CIFAR-10 dataset
 using tensorflow library.
 - The CNNs are executed in Intel Xeon
 E5-2690 CPU having Ubuntu 18.04

- **Figure 1:** Information Leakages for MNIST and CIFAR-10 dataset considering different categories
- Images belonging to a particular class activates a specific set of neuron in the CNN, which might not get activated for other images belonging to a different class.
- The activation and inactivation of these neurons influence CNN operation affecting CPU cache, branch predictor and other units differently for different categories.

4. Methodology for Evaluation

- 1. A group of *User* can access a CNN, trained on private information, to get predictions on their respective inputs.
- 2. The *Evaluator* is not provided with any details of the CNN but it can dynamically monitor HPCs during its execution using its pro-

with a 4.15.0-36-generic kernel.

• Case Study on MNIST

	cache-misses		branches	
	<i>t</i> -values	<i>p</i> -values	<i>t</i> -values	<i>p</i> -values
$t_{1,2}$	-21.8166	pprox 0	0.4303	0.6669
$t_{1,3}$	-25.7566	pprox 0	1.6565	0.0977
$t_{1,4}$	2.5334	0.0113	0.9537	0.3403
$t_{2,3}$	40.5268	pprox 0	-2.0064	0.0449
$t_{2,4}$	22.6505	pprox 0	0.4941	0.6212
$t_{3,4}$	-20.9758	pprox 0	2.5435	0.0110

• Case Study on CIFAR-10

	cache-misses		branches	
	<i>t</i> -values	<i>p</i> -values	<i>t</i> -values	<i>p</i> -values
$t_{1,2}$	4.4643	0.0001	-0.8796	0.3801
$t_{1,3}$	11.0415	pprox 0	2.0810	0.0392
$t_{1,4}$	-16.3093	pprox 0	-1.7474	0.0823
$t_{2,3}$	-16.9589	pprox 0	-1.0332	0.3032
$t_{2,4}$	-21.2428	pprox 0	-0.7535	0.4521
$t_{3,4}$	-8.4637	pprox 0	0.2997	0.7647

- * $t_{i,j}$: The *t*-test on distributions for category *i* and *j*.
- * The **bold** faced results indicate that the

Figure 2: Evaluation Scenario

- 3. Various HPC events can be monitored in parallel during the classification operation of different category of input images, considering each category individually.
 - Generates distributions of different events for each class of inputs.

cess id and perf tool.

2,26,77,01,129	branches
6,24,60,873	branch-misses
61,95,45,765	bus-cycles
83,64,694	cache-misses
6,34,15,934	cache-references
16,22,12,80,350	cycles
12,09,42,22,814	instructions
15,99,20,10,924	ref-cycles

Figure 3: Values of different HPC events during classification of a sample MNIST image

Figure 4: Distributions of differenct HPC events during the classification operation for different categories of images in MNIST and CIFAR-10

Image of 1

Image of 3

Image of 4

2.32

2.30

Image of 2

4. The *Evaluator* employs hypothesis testing methodology by computing *t*-statistics on the distributions of same HPC events for different categories.

1.16

two categories are distinguishable.

6. Conclusions

- We presented a strategy to evaluate the data privacy of DNN architectures with readily available Hardware Performance Counters using *t*-test.
- Our evaluation tool highlights the need for designing DNN architectures with indistinguishable CPU footprints while classifying different input categories in order to implement a privacy preserving classifier.
- Distinguishable distributions signify there are side-channel information leakage, which an adversary will be able to exploit to uncover private input images.

– Indicates an inefficient implementation of the CNN model.

7. References

1] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse engineering convolutional neural networks through side-channel information leaks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018.

[2] Mengjia Yan, Christopher Fletcher, and Josep Torrellas. Cache telepathy: Leveraging shared resource attacks to learn dnn architectures. arXiv preprint arXiv:1808.04761, 2018.

[3] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what you see: Power side-channel attack on convolutional neural network accelerators. In *Proceedings of the 34th Annual Computer Security Applications Conference*. ACM, 2018.

[4] Qian Ge, Yuval Yarom, Frank Li, and Gernot Heiser. Your processor leaks information-and there's nothing you can do about it. arXiv preprint arXiv:1612.04474, 2016.