
Detecting Malware and Ransomware using
Hardware Performance Counters

Manaar Alam1, Sarani Bhattacharya1*, Debdeep Mukhopadhyay1, and Anupam Chattopadhyay2
1Indian Institute of Technology Kharagpur, 2Nanyang Technological University Singapore

Introduction
Malwares are stealthy and hard-to-detect by performance
analysis of programs. Various evasive mechanisms adopted
by these malwares make them still succeed to execute, af-
fecting precious data. Recent trends try to detect their pres-
ence by performing behavioural analysis using dedicated
software to quarantine such malicious codes. Often ob-
serving high-level information, like system calls, have been
evaded by smart malwares. In addition to it, identification
and blocking of ransomwares at the earliest along with re-
covering the contents of the already encrypted files is an
open challenge. It is proved that despite advancing in en-
cryption systems, the prominent ransomwares leave a trait
in the access of I/O and file-systems.

Advantages of HPCs
Hardware Performance Counters (HPCs) have certain ad-
vantages in detecting the presence of malwares as compared
to other system call based detection methods.

1 HPCs provide more sensitive information of a system
behavior than system calls.

2 HPCs are difficult to manipulate by the malware writer.
3 Easily accessible in most of the Linux based system.

Monitoring Features
The feature monitored in the detection mechanism is a tu-
ple of (Indicator, Observer).
• Indicator: Benign Operating System library executables, like ls,

netstat, ps, who, pwd.
• Observer: Low-level hardware events, like cycles, instructions,

cache-references, cache-misses, branches, branch-misses.

(a) (b)

Figure 1: a) Assigning Sensitivity to each Tuple, and b) Monitored
Tuples with their Sensitivity

(a) (b)

Figure 2: Importance of Tuples: Distribution of a) branch-misses
and b) cycles for netstat in presence of benign AES and a Malware

Results

(a) (b)

Figure 3: Performance Comparison with a) State-of-the-Art and b) Dif-
ferent Machine Learning based approaches

Table 1: Average Training and Detection time for different models
Training Time (mS) Detection Time (µS)

Multilayer Perceptron 1434.1695 549.9807
Logistic Regression 839.0549 255.8256

Gaussian Naive Bayes 14.1558 425.2911
Support Vector Machine 1784.0227 255.4266

Random Forest 226.3765 2114.9878
Proposed Approach 378.8816 1777.9335

Table 2: Resource requirement on x86 and ARM processors (per second)
%CPU Usage %MEM Usage

x86 9.405% 0.1836%
ARM Cortex-A9 16.788% 0.7981%

Objectives

To highlight the role of low-level hardware events de-
duced from Hardware Performance Counters
(HPCs) in detecting the existence of malware execu-
tion with the help of two case studies:

1 Developing a statistical lightweight tool, in the
context of embedded platform, to evaluate the
potential of a program under test of being a
malware.

2 Developing a very fast detection methodology for
popular ransomware on standard desktops.

Malware Detection

(a) (b)

Figure 4: a) Advantage over System Call based approach, b) Control
Flow of Malware Detector

(a) (b)

Figure 5: Removal of a) False Positives, and b) False Negatives using
Multivariate t-test

Behaviour of Ransomware and SPEC

(a) # Instructions (b) # Cache References

(c) # Branch Instructions (d) # Instructions

(e) # Cache References (f) # Branch Instructions

Figure 6: Variation of HPCs in presence of Wannacry Ransomware (a),
b), c)) and SPEC (d), e), f))

Contribution

• A lightweight malware detector using hypothesis
testing for Embedded Platform.

1 A [0, 1]-metric λ to decide amount of malware-ness.
2 Illustrating the importance of both system calls and HPCs
with their relative sensitivity.

3 A multivariate t-test to further improve the accuracy
where the confidence on a univariate analysis is low.

• A Neural Network (NN) based anomaly detector to
detect Ransomware in standard desktops.

1 Learning an NN on normal time-series based behaviour of
the system under observation with performance event
statistics obtained from HPCs.

2 Transforming time series to the frequency domain and
understand the repeatability of data with the help of a
second NN to remove false positives.

Ransomware Detection

Figure 7: Control Flow of Ransomware Detector

Hardware events likely to change because of the symmetric
and asymmetric key encryptions of ransomwares are moni-
tored. Generally the symmetric encryption affects the cache
based events while the asymmetric encryptions affect the
instruction and branching events.

Behaviour in Frequency Domain

(a) FFT of Instructions (b) FFT of Cache References

(c) FFT of Branch Instructions

Figure 8: Variation of Amplitude in frequency domain of HPCs in pres-
ence of SPEC and Wannacry

Second Autoencoder Behavior

(a) Wannacry (b) SPEC

Figure 9: Reconstruction Errors in the Second Autoencoder

First Autoencoder Behavior

(a) Wannacry (b) Vipasana (c) SPEC
Figure 10: Reconstruction Errors in the First Autoencoder


