
LAMBDA: Lightweight Assessment
of Malware for emBeddeD Architectures

Research Objective
To propose a framework for runtime anomaly detection on embedded systems - The framework is capable of performing anomaly detection
in a hierarchical manner (i.e. application level, operating system level and processor micro-architecture level) by harnessing the information
available at various levels to detect malicious exploits.

Sai Praveen Kadiyala, Muhamed Fauzi Bin Abbas,
Yash Shrivastava, Sikhar Patranabis,

Manaar Alam, Debdeep Mukhopadhyay,
Siew-Kei Lam, Thambipillai Srikanthan

Motivation

Detection Approach

Measure the distance of a program under test
from the characteristics of a given set of benign
programs.

If the distance is less than a previously defined
threshold value, the target program can be
treated as a benign program otherwise the
program is a malware.

Use (HPC, Indicator) for monitoring.

Dual core setup
- Watchdog Core: to monitor all the processes.
- Sanitized Core: to run non-malicious processes.

Emphasize on critical HPC-Indicator pair
- Performed to give more weightage on important
 performance counters and indicator programs.

Calculate the amount of maliciousness of a program under test
 - Create bins for program under test at runtime.
 - Multiplication of the trained weights with these bins produces score for the program under test.
 - Score greater than a pre-defined threshold value signifies the malicious behaviour of the program.

Hardware Performance Counters
 - More efficient to detect Kernel modifying rootkits.
 - Easily accessible in most of the Linux based systems.

Determine weights during training
 - Normalised weights help at runtime to determine distance of malware using
 statistical T-test.

Feature

Feature

PMU Events
Count

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

IS PS NETSTAT WHO PWD

W
ei

gh
ts

Indicator

Branches
Instructions
Cycles
Caches-references
Caches-misses
Branch-misses

Scoring at Runtime

Control Flow Data Collection

Creating Bins

Normalized Weights

HPC provides more sensitivity
& Increased Protection

T-test vs. Machine Learning based Detection

Advantage over Training and Detection Time

Run time Statistical T-test

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

IS PS WHO PSD

P
er

ce
nt

ag
e

C
ha

ng
e

Indicators

Branches

Instructions

Cycles

Sys Call

Template for a
(HPC,Indicator)
tuple in the
benign
environment.

The null hypothesis of two equal means is rejected when the test
statistic |z| exceeds a threshold of 4.5, which ensures a confidence
of 0.99999.

Observed Template
for a (HPC, Indicator)
tuple with the
Program under test

Advantages for HPC observation:
Difficult to manipulate HPC values by the malware.
More sensitive when observed in conjunction with system calls.
Results in better false positives and negatives

Advantages of the approach
- Monitoring only system calls doesn’t provide any significant
 information but monitoring HPCs does. Significant changes can be
 observed in presence of malware.
 - Enables semantic based malware detection.
 - Supports multi-core environment.

Models Average
Accuracy

Statistical T-test approach 100%

Multilayer Perceptron 99.73%

Gaussian Naïve Bayes 99.89%

Logistic Regression 99.69%

Support Vector Machine 99.98%

Random Forest 100%

Various machine learning based approaches can also detect
malware with significantly higher accuracy. However, cost of training
and implementation overhead for embedded platforms is relatively
high.

Model Building Time Detection Time
(in milliseconds) (in milliseconds)

Statistical T-test approach 43.7231 15.3789
Multilayer Perceptron 2036.9895 10.2458
Gaussian Naïve Bayes 7.1782 10.4336
Logistic Regression 200.8651 4.0281
Support Vector Machine 14.3887 5.1743
Random Forest 85.9585 91.2992

Random Forest algorithm achieves 100% accuracy, but
both of its model building time and detection time is higher
than statistical T-test due to its complex architecture.

