

SPACE 2020: Tenth International Conference on Security, Privacy and Applied Cryptographic Engineering

Using Rowhammer for Fault Analysis of Block Ciphers and a Mitigation Technique thereof

Anirban Chakraborty¹, Sarani Bhattacharya², Sayandeep Saha¹, Manaar Alam¹ and Debdeep Mukhopadhyay¹

1. Indian Institute of Technology Kharagpur, India

2. Katholieke Universiteit Leuven, Belgium

Exploiting Page Frame Cache

Adversary

Running on a standard system, requests some amount of memory. The buddy allocator scans the list of available page frame blocks and finds out a block that can satisfy the request

Adversary

De-allocates a pre-chosen memory page (by using unmmap function). The 'unmapped' page resides in the page frame cache of the CPU

Victim

Sends a request for additional memory pages. Due the presence of PFC, the buddy system will serve the page that was 'unmapped' by the adversary

The bin-partitioning

- Access the first page and put it in bin_0
- Next, access the next page and the first page simultaneously and check their access times

- If access time for next page is more than a pre-defined threshold, it signifies a row conflict
- The pair of pages must be located in the same bank but different rows.
- In that case, put the new page in bin_0
- If the access time is less than threshold, put it in the next bin, i.e, bin₁

ExplFrame on OpenSSL AES T-tables

- OpenSSL v1.1.1 AES T-tables T0 T3
- The adversary waits for the victim to load the T-tables into memory
- Due to the presence of PFC, the Ttables will be allocated in the same vulnerable page
- Once one of the T-tables is placed in a freed page, the adversary again starts Rowhammer-ing on the same bin.

Deep Round PFA

- ➤ Central Idea Guess a part of the key and partially decrypt upto the round where bias is observed
- > Identify the bias using Squared Euclidean Imbalance (SEI) test
- We target the 9th round of AES computation
- Fault is induced in table T0 and we encrypt 20,000 plaintexts with the faulty T-tables
- The blue region in the convergence plot represents SEI values for wrong key
- The red line refer to SEI for correct key

Overview of our Diagnostic tool

Five Step Approach

- 1. Access
- 2. Address Map
- 3. Access Map
- 4. Data Preparation
- 5. Authorization

Profiler: Generating Access Patterns

- Identification of a probable Adversary
- Generation of Access Patterns

Analyzer: Determining Rowhammer Process

Offline Phase

- Obtains data for both benign and malicious patterns
- Trains a CNN to differentiate patterns that induce bit flips

Online Phase

- Obtains access
 pattern for unknown
 process
- Uses the already trained CNN to classify the process

Future Works

- Explore the ExplFrame attack on ECC protected memory
- Can we replace supervised learning used in the diagnostic tool with an unsupervised one?

Thank You!