Detecting Malware and Ransomware using
Hardware Performance Counters

Introduction

Malwares are stealthy and hard-to-detect by performance
analysis of programs. Various evasive mechanisms adopted
by these malwares make them still succeed to execute, af-
fecting precious data. Recent trends try to detect their pres-
ence by performing behavioural analysis using dedicated
software to quarantine such malicious codes. Often ob-
serving high-level information, like system calls, have been
evaded by smart malwares. In addition to it, identification
and blocking of ransomwares at the earliest along with re-
covering the contents of the already encrypted files is an
open challenge. It is proved that despite advancing in en-
cryption systems, the prominent ransomwares leave a trait
in the access of I/O and file-systems.

Advantages of HPCs

Hardware Performance Counters (HPCs) have certain ad-
vantages in detecting the presence of malwares as compared
to other system call based detection methods.

© HPCs provide more sensitive information of a system
behavior than system calls.

® HPCs are difficult to manipulate by the malware writer.

® Easily accessible in most of the Linux based system.

Monitoring Features

The feature monitored in the detection mechanism is a tu-
ple of (Indicator, Observer).

= Indicator: Benign Operating System library executables, like Is,
netstat, ps, who, pwd.

= Observer: Low-level hardware events, like cycles, instructions,
cache-references, cache-misses, branches, branch-misses.
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Figure 1: a) Assigning Sensitivity to each Tuple, and b) Monitored
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Probability Density of branch-misses for 'netstat' in presence of AES and Malware
t-score = -1.2761

Probability Density of cycles for 'netstat' in presence of AES and Malware
t-score = -18.15
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Figure 2: Importance of Tuples: Distribution of a) branch-misses

and b) cycles for netstat in presence of benign AES and a Malware
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Figure 3: Performance Comparison with a) State-of-the-Art and b)

Different Machine Learning based approaches

Table 1: Average Training and Detection time for different models

Training Time (mS) | Detection Time (uS)
Multilayer Perceptron 1434.1695 549.9807
Logistic Regression 839.0549 255.8256
Gaussian Naive Bayes 14.1558 425.2911
Support Vector Machine 1784.0227 255.4266
Random Forest 226.3765 2114.9878
Proposed Approach 378.8816 1777.9335

Table 2: Resource requirement on x86 and ARM processors (per sec)

%CPU Usage | %MEM Usage
x80 9.405% 0.1836%
ARM Cortex-A9|  16.788% 0.7981%
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Obiectives

To highlight the role of low-level hardware events de-
duced from Hardware Performance Counters
(HPCs) in detecting the existence of malware execu-
tion with the help of two case studies:

® Developing a statistical lightweight tool, in the
context of embedded platform, to evaluate the
potential of a program under test of being a
malware.

® Developing a very fast detection methodology for
popular ransomware on standard desktops.

Malware Detection
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Figure 4: a) Advantage over System Call based approach, b) Control
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Figure 5: Removal of a) False Positives, and b) False Negatives using
Multivariate t-test

Behaviour of Ransomware and SPEC
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Figure 6: Variation of HPCs in presence of Wannacry Ransomware (a),

b), c)) and SPEC (d), e), f))

= A lightweight malware detector using hypothesis
testing for Embedded Platform.

® A |0, 1]-metric A to decide amount of malware-ness.

® Illustrating the importance of both system calls and HPCs
with their relative sensitivity.

® A multivariate t-test to further improve the accuracy
where the confidence on a univariate analysis is low.

« A Neural Network (NN) based anomaly detector to
detect Ransomware in standard desktops.

® Learning an NN on normal time-series based behaviour of
the system under observation with performance event
statistics obtained from HPCs.

® Transforming time series to the frequency domain and
understand the repeatability of data with the help of a
second NN to remove false positives.
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Figure 7: Control Flow of Ransomware Detector

Hardware events likely to change because of the symmetric
and asymmetric key encryptions of ransomwares are moni-
tored. Generally the symmetric encryption affects the cache
based events while the asymmetric encryptions affect the
instruction and branching events.

Behaviour in Frequency Domain
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Figure 8: Variation of Amplitude in frequency domain of HPCs in
presence of SPEC and Wannacry
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Figure 9: Reconstruction Errors in the Second Autoencoder
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Figure 10: Reconstruction Errors in the First Autoencoder



