Detecting Malware and Ransomware using
Hardware Performance Counters

Introduction

Malwares are stealthy and hard-to-detect by performance
analysis of programs. Various evasive mechanisms adopted
by these malwares make them still succeed to execute, af-
fecting precious data. Recent trends try to detect their pres-
ence by performing behavioural analysis using dedicated
software to quarantine such malicious codes. Often ob-
serving high-level information, like system calls, have been
evaded by smart malwares. In addition to it, identification
and blocking of ransomwares at the earliest along with re-
covering the contents of the already encrypted files is an
open challenge. It is proved that despite advancing in en-
cryption systems, the prominent ransomwares leave a trait
in the access of I/O and file-systems.

Advantages of HPCs

Hardware Performance Counters (HPCs) have certain ad-
vantages in detecting the presence of malwares as compared
to other system call based detection methods.

© HPCs provide more sensitive information of a system
behavior than system calls.

® HPCs are difficult to manipulate by the malware writer.

® Easily accessible in most of the Linux based system.

Monitoring Features

The feature monitored in the detection mechanism is a tu-
ple of (Indicator, Observer).

= Indicator: Benign Operating System library executables, like Is,
netstat, ps, who, pwd.

= Observer: Low-level hardware events, like cycles, instructions,
cache-references, cache-misses, branches, branch-misses.

Program
Under Test

Distributions
for Benign
Programs

0.07
M Branches
Instructions

Watchdog
Core

Get Tuple
Distribution

0.06

Cycles
Cache-references

Cache-misses

L]
L]
L
L]
‘ Branch-misses
s s netstat who pwd

Indicators

(a) (b)
Figure 1: a) Assigning Sensitivity to each Tuple, and b) Monitored

0.

=
@

0

=

Weights

Y

0

=
@

0

=
5]

0

=

T-value
=

T-Critical?

Increase Tuple
Sensitivity

Tuples with their Sensitivity

Probability Density of branch-misses for 'netstat' in presence of AES and Malware
t-score = -1.2761

Probability Density of cycles for 'netstat' in presence of AES and Malware
t-score = -18.15

22
N AES . AES
0.00012 1 e Malware 0.0000030 4 m Malware
0.00010 1 0.0000025 4
2 0.00008 £ 0.0000020
3 3
P 2
"5 0.00006 1 S 0.0000015
o o
0.00004 0.0000010 4
0.00002 A 0.0000005 4
0.00000 - I . I 0.0000000 - | ” . ,
260000 270000 280000 290000 300000 310000 320000 330000 340000 1.8 1.9 2.0 21 2.2 2.3
branch-misses cycles le7
(a) (b)

Figure 2: Importance of Tuples: Distribution of a) branch-misses

and b) cycles for netstat in presence of benign AES and a Malware

Results
. 1T B T %
: o s

085 A
12

F1-Score

080
10
075

070

065
‘ .. e

MAP GuardOL MumChecker Univariate Mulivariate

(=T S - (- 1

Logistic Regression
Random Forest
Proposed Approach

Multilayer Perceptran 4 }7

Gaussian Naive Bayes 4
Support Vector Machine 4

N False Positives W False Negatives

(a) (b)
Figure 3: Performance Comparison with a) State-of-the-Art and b)

Different Machine Learning based approaches

Table 1: Average Training and Detection time for different models

Training Time (mS) | Detection Time (uS)
Multilayer Perceptron 1434.1695 549.9807
Logistic Regression 839.0549 255.8256
Gaussian Naive Bayes 14.1558 425.2911
Support Vector Machine 1784.0227 255.4266
Random Forest 226.3765 2114.9878
Proposed Approach 378.8816 1777.9335

Table 2: Resource requirement on x86 and ARM processors (per sec)

%CPU Usage | %MEM Usage
x80 9.405% 0.1836%
ARM Cortex-A9| 16.788% 0.7981%

Manaar Alam and Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur

Obiectives

To highlight the role of low-level hardware events de-
duced from Hardware Performance Counters
(HPCs) in detecting the existence of malware execu-
tion with the help of two case studies:

® Developing a statistical lightweight tool, in the
context of embedded platform, to evaluate the
potential of a program under test of being a
malware.

® Developing a very fast detection methodology for
popular ransomware on standard desktops.

Malware Detection

UNKNOWN
Program

CORE 1

Terminate if very
high lambda value

g

3 Pass if very

p low lambda value
9 15

&

Allow Program
to Execute

Pass if lambda
value is far from 1

4
Higher order t-test *Term\n?te if lambda
valueis close to 1

Is ps who pwd

BBranches Mlnstructions M Cycles M Sys Call

(a) (b)
Figure 4: a) Advantage over System Call based approach, b) Control

Flow of Malware Detector

Comparison of Univariate and Multivariate t-test Comparison of Univariate and Multivariate t-test

= Score after Univariate t-test
Scare after Multivariate t-test
=== Thresheld
Critical Zone

— Score after Univariate t-test
Scare after Multivariate t-test
=== Threshcld
Critical Zone

+10%

072613

0y =

"
1
1
i
1
i
1
1
1
1
\
v
[
are (lambda)

Score (lambda}l

S
=
py

05 Benign 4 Benign & 06 Malware 4 Malware &
{0.755398, 0.818398) (0.725962, 0.831933) (0.757339, 0.999998) {0.716291, 0.999938)

0.4 T T T T T 05 T T T T T
0 2 4 f B 0 2 4 b 8
Program Under Test {Benign) Program Under Test (Malware}

(a) (b)
Figure 5: Removal of a) False Positives, and b) False Negatives using
Multivariate t-test

Behaviour of Ransomware and SPEC

1e8

1.0 100000
WannaCry WannaCry

—— Regular Observation —— Regular Observation
0.8 1 80000
0.6 60000 -
0.4 4 40000 A
0.2 1 - - A . - 20000
0.0 1= T . : : . O-M Hctridtbrdebicihprdopdegrtedeleb-ondetoter

0 100 200 300 400 500 0 100 200 300 400 500

Time Interval (10ms) Time Interval (10ms)

(a) # Instructions (b) # Cache References

L le7 1.0 le8
’ WannaCry WannaCry
Lo —— Regular Observation 08 —— SPEC Observation
0.8 1
0.6
0.6
0.4
A
0.4 4 1l
o h v pac AL il
0.2
0.2 1
0.0 L— . : : : : 0.0 1— : : : : : -
0 100 200 300 400 500 0 50 100 150 200 250 300

Time Interval (10ms) Time Interval (10ms)

(c) # Branch Instructions (d) # Instructions

100000 le7

WannaCry 121

—— SPEC Observation
80000 1.0 1

WannaCry
—— SPEC Observation

0.8 1
60000 -

0.6 1 A
\ A v v v

40000 -
0.4 1

200009 MWWWW 021

0

T T T T 1 7 T 0.0 T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Interval (10ms) Time Interval (10ms)

(e) # Cache References (f) # Branch Instructions

Figure 6: Variation of HPCs in presence of Wannacry Ransomware (a),

b), c)) and SPEC (d), e), f))

= A lightweight malware detector using hypothesis
testing for Embedded Platform.

® A |0, 1]-metric A to decide amount of malware-ness.

® Illustrating the importance of both system calls and HPCs
with their relative sensitivity.

® A multivariate t-test to further improve the accuracy
where the confidence on a univariate analysis is low.

« A Neural Network (NN) based anomaly detector to
detect Ransomware in standard desktops.

® Learning an NN on normal time-series based behaviour of
the system under observation with performance event
statistics obtained from HPCs.

® Transforming time series to the frequency domain and
understand the repeatability of data with the help of a
second NN to remove false positives.

Ransomware Detection

Ransomware
Detection Method

Window of
Monitors raw HPC
HPCs values
Eg_ =l \’;:;:;r:gg Autoencoder_1
Window of ' If TRUE, then ' _
Sandbox raw HPC the Window is . Hecﬁger-rt‘;t:ctlon
Environment values ' anomalous

Flow of Operations

b S '
FET ' Error
v -
Converter Threshold

Transformed
FFT values

w
Reconstruction Error
A P >
utoencoder_2 Th hold
If TRUE, then
1

the Window
belongs to a
1 Ransomware

> Both Offline and
Online Phase

-= > Online Phase

hd
RANSOMWARE
Detected

Figure 7: Control Flow of Ransomware Detector

Hardware events likely to change because of the symmetric
and asymmetric key encryptions of ransomwares are moni-
tored. Generally the symmetric encryption affects the cache
based events while the asymmetric encryptions affect the
instruction and branching events.

Behaviour in Frequency Domain

10 1le9 10 le7
—— SPEC
0.8 1 0.8 —— WannaCry
—— Vipasana
S —— SPEC S
E 0.6 s 0.6
= —— WannaCry =
o . o
£ 04 —— Vipasana € 044
< <
0.2 4 0.2
0.0 A I AN A ANt A I A A

o
o

-0.4 —(I).2 0.0 0.I2 0.4 —6.4 —6.2 0.0 0.|2 0.|4
Frequency Bins Frequency Bins

(a) FFT of Instructions (b) FFT of Cache References

1.0 le9

—— SPEC
—— WannaCry
—— Vipasana

Amplitude
o o
o [e¢]

I
IS

o
N)

©
o

~0.4 -02 0.0 0.2 0.4
Frequency Bins

(C) FFT of Branch Instructions

Figure 8: Variation of Amplitude in frequency domain of HPCs in
presence of SPEC and Wannacry

Second Autoencoder Behavior

0.5 0.10
—— Wannacry Observation —— SPEC Observation
= -
O 041 —— Threshold S 0.081 —— Threshold
= ' =
L w
< c
2 0.3+ . 0.061
9] s}
> >
= b= 0.04
? 0.2 044
c <
S o
& 01 2 0.021
T T T T T 0.00 T T T T T
0 500 1000 1500 2000 0 200 400 600 800

Time Interval (10ms) Time Interval (10ms)

(a) Wannacry (b) SPEC

Figure 9: Reconstruction Errors in the Second Autoencoder

First Autoencoder Behavior

3.5 —— Wannacry Observation 0.7 1
— —
o —— Threshold o
= 3.0 b 0.6 -
L L
— 2.5 [
o q S 0.5 1
O 2.0 S
P 2 04
"J’) 1.5 1 -IL7;
[[
0.3
o . o
S 1.0 S
o 0.5 - I"L ﬂ o 0.2
00 . "'d e - TN SN 0 1 i

6 560 10|00 15'00 20I00 6 5'0
Time Interval (10ms)

(a) Wannacry

Time Interval (10ms)

(b) Vipasana

—— Vipasana Observation 2.5 1 J —— SPEC Observation
-
—— Threshold o —— Threshold
—~ 2.0 A
Ll
[
o
= 1.5 1
O
>
-
% 1.0 1
[
o
O
D 0.5
o
ol] |
0.0 — Y —
150 200 (0] 1000 2000 3000 4000 5000 6000 7000

Time Interval (10ms)

(c) SPEC

Figure 10: Reconstruction Errors in the First Autoencoder

